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ABSTRACT

An approximate analytical solution is obtained for hypersonic flow

past a slender elliptic cone at small angle of attack. The analysis is

based on perturbations of hypersonic flow past a circular cone al igned

wi th the free stream, the perturbations steming from the linear combina-

tion of small angl e of attack and small cross-section eccentricity . By

means of previously obtained hypersonic approximations for the basic-

cone problem , closed—form approximate solutions for the perturbation

equations are obtained wi thin the framework of hypersonic small-disturbance

theory. Resul ts for the shock shape , shock-layer structure, and surface

a 
condi tions are presented, together wi th comparisons wi th experimental

data.
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APPROXIMATION FOR HYPERSONIC FLOW

PAST AN ELLIPTIC CONE

1. INTRODUCTION

For supersonic flows past bodies without axial symmetry , the ellip-

tic cone is a basic body shape. Its counterpart, the circular cone , is

a basic axisymmetric body shape with flow field properties that are exten-

sively tabulated. Even the supersonic flow past a circular cone at small

angle of attack is extensively tabulated and fai rly wel l understood . On

the other hand , the properties of the supersonic flow field past an

elliptic cone are not extensively tabulated , at least in comparison with

the circular cone at angle of attack. Al though numerous papers have been

directed towards supersonic flows past elliptic cones , their goals have

been specific , and no general or comprehensive flow field calculations

have been set forth. The purpose of this work is to partially remedy

this situation and to present an approximate analytic solution that

illustrates the general flow field features of hypersonic flow past a

slender elliptic cone with small eccentricity .

Supersonic flow past slender cones with arbitrary cross section can

be treated with some generality by means of linearized theory [t3~ and
linearized theory can be extended to second order [2] to account some-

what for weak nonlfnear effects. These results , however , are frequently

not appropriate for the hypersonic Mach numbers and flow deflections of

practical concern .

Another approach to the problem deals with flows that deviate slightly

from the basic axisyniiietric flow past a circular cone. The so-cal l ed
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scheme of linearized characteristics was appl ied by Fern , Ness , and

Kaplita [3] to several conical bodies with non—axisymmetri c cross sec-

tions. This method is subject to a number of criticisms for cross —sec-

tion areas that deviate significantly from circles [4] , and thus a modi-

fication of the linearized characteristics method was appli ed to elliptic

cones at angle of attack by Martellucci [5]. In the above use of the

linearized characteristics method , the perturbation equations were

solved numerically. Chapkis [6], applying the linearized characteristics

method , used hypersonic approximations for the basic cone fl ow to obtain

relatively simple specific results for an elliptic cone.

Besides the above methods of computation , there are numerical schemes

for Integrating the complete governing gas dynamic equations. Two notable

schemes appl ied to elliptic cones are those of Stocker and Mauger [7]

and Babenko et al .[8]. There are also semi -empirical methods for deal-

ing wi th certain features of supersonic flows past elliptic cones , such

as tangent-cone methods , equivalent circular-cone methods , and the method

of Kaattari [9]. Whichever method has been utilized to date , the general

features of the supersonic flow field past an elliptic cone , showing

effects of Mach number , cone angle , and ellipse eccentricity on the shock

shape , the shock-layer structure , and the surface conditions , have not

been delineated .

In this undertaking , we wish to start with the small-perturbation

equations for perturbed flow past a basic circular cone at zero angle

of attack and take the approach of Chapkis [6] for the elliptic cone.

* 

We shall use improved approximations for the basic cone flow [10 ,11] and

* 
obtain approximate analytical solutions for the perturbation equations .

The analysis is analogous to that of Doty [12] and Doty and Rasmussen [133

for obtaining approximations for hypersonic flow past circular cones at

- -

~~~~~ 

* -  
-
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small angle of attack, which were shown to be very accurate. The

analysis is cast in the form of hypersonic similarity theory, and the

results are presented in appropriate similarity form.

The perturbation expansions involve a small parameter for the angle

of attack and for the measure of the eccentricity of the ellips e cross

section . These expansions are not uniformly valid in a thir vortical

layer adjacent to the cone surface. It can be shown [14,15], however,

that at least the pressure and azimuthal veloci ty component are valid

across the vortical layer. Since these two variables are of most importance ,

further consideration of the vorti cal l ayer will n~t be undertaken.

-~~- -ELc~. . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~

- - -

-~~~~~ ~~~~~~~
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2. UNYAWED ELLIPTIC CONE BODY AND SHOCK GEOMETRY

2.1 Body Geometry U
In rectangular Cartesian coordinates , as shown in Fig. 2.1 , the

unyawed elliptic cone body is represented by
2 2

__�2
~.�* + —

~~
—-

~~

. = 1 , (2.1)
az  b z

where a tan 8a and b tan are the tangents of the semivertex

angles of the semiminor and semimajor axes of the elliptic cone. In

terms of spherical polar coordinates , also shown in Fig. 2.1 , equation

(2.1) can be rewritten as

tan e
tan e = 

m (2.2)
vfl + e cos 24

where

tan ~ E ~ ab = b~~~ = a~~~ (2.3a) 1.
= /~E (l-e 2)1”4

2 2
e 

- (2.3b)
b +a

The parameter e is a measure of the eccentricity of the elliptic cone .

The first three terms of the Fourier-series representation of equation

(2.2) are given by

tan e = tan e,~ [A0 + A2 cos 24 + A4 cos 44 + ...] (2. 4)

where 
A -

~~
- ~~~~-~~~~- (2.5a)

A2 — 2 
4 [(2-k2) K( k) - 2E(k)] (2.5b)

irk /T i  

- - . - - . - .
Y - .
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Basic Shock : e = 8

Perturbed Shock
8 = 8 + COS 4 - cg cos 2i

a
b

Basic Cone : 0 = iS

Perturbed Cone : e = iS - ~ cos 2i

Figure 2.1 Cone Coordi nates and Geometry
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A4 - ~~
. A~ - ~~~~

- A~ (2.5c)

— e
•

and

E(k)E 
ir/2 

- k2sin2u du (2.5e)

ir/2
K(k)~ J du (2.5f)

0 /i~ k2sin 2u

are the complete ellipti c i ntegrals of the fi rst and second kinds . For

small val ues of the eccentricity, e, the Fourier coefficients can be ex-

panded as

A0 = 1 + ~~~~~ e~ + 0(e4) (2.6a)

A2 = — •
~~
. [1 + ~~~~

- e2 + 0(e4)] (2.6b)

A4 = 

~~ e
2 [1 + ~~~ e~ + 0(e4)] (2.6c)

When the eccentricity , e, is smal l the successive Fourier coefficients

become smaller and smaller. For sufficiently small e, the Fourier coeffi-

cients for the higher harmonics can be negl ected.

We can expand equation (2.4) for e in a Fourier expansion and ob-

tam for small eccentricities 
20 = iS - e cos 24 + 0(c ) (2.7)

where -l A A2
2 

4iS tan (A0 tan em) - sin 2 0m + O(e )

2
em + 

~~~~~
. [3 - 2 sin 2em] sin + 0(e4) (2.8a)

A tane A 2 A 2
- 

l+A~ tdfl2Om 
[1-(--~-— + A4) sin2em + —i-— (l+3A~ ) sin4em + 0(e4)]

~~~~~~I ~~~~

- 

—

-

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~
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~~~~
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~~
. [1 + e2{

~~ - 
~
. sin2e~ + 

~~

. sin’e~} + 0(e4 )] sin 2 0m (2.8b)

The parameter e Is a new measure of the eccentricity and is the appropriate

parameter to be used tn the subsequent analysis. The parameter iS specifies

the sem ivertex angle of the basic circular cone about whi ch a perturbation

analysis is to be performed.

Comparison of the two—term approximation (2.7) wi th the exact equa-

tion (2.2) for the elliptic cone Is shown in Fig. 2.2. When a = 0.2555

and b 0.3562, such that e = 0.320 and = 16.300, the two-term approx-

imation gives a good representation of the actual ellipse . When a = 0.2256

and b = 0.4034, such that e = 0.523 and em 
= 15.56°, the representation

is not as good, but still a reasonble approximation when precise accuracy

Is not paramount.

2.2 Shock Geometry

The conical shock wave attached to the elliptic cone is assumed to

have the form (for ~ = 0)

e5 8 — c g cos 24+0(~
2) , (2.9)

which Is analogous to equation (2.7) for the body shape. Here B is the

semivertex angle of the basic circular shock corresponding to the basic

body with semivertex angle S. - The factor g is to be determined from the

perturbation analysis. It~in effect,represents the deviation of the shock

eccentrtctty from the body eccentricity.

By means of vector analysis, we find the unit outward normal on the

shock to be given by

2 — 2€g sin 24 + o(~
2) (2.10)

This result is needed to establish the shock jump conditions .

h.111 ~~~~~~ -
- - 

.

~~~~~~ -‘-~~~~~~~~~~~~~~~~~~~
- - - : -

~~~~~~
‘

~~ ~~~~~ -
~~~~~

---
~-: ~~~~~~~~~~~~~~~~~~ f-
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a = 0.2555
b = O . 3 5 6 2
e 2 0.320

a = 0.2256
b = 0.4034
e O.523

FIgure 2.2 Two-Term Fourier Representation of the Ellipse

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
- : -- 
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3. BOUNDARY CONDITIONS

3.1 Expansions for the Flow Variables

* 

Let the velocity vector for conical flow be represented in spherical

coordinates by

V = u(e,+)~ , + v(e,~)e9 + w(e,~)~4 . (3.1)

The Fourier representation for the body and shock shapes suggest that the

velocity components, pressure, and density can be expanded in the follow-

ing forms , valid outside the vortical layer adjacent to the body surface

( f o r a = O )  2u(e,4) u0(e) + cu 1 (e) cos 24 + O(c ) (3.2a)

v(e,~) v0(e) + cv1(e) cos 24 + 0(e2) (3.2b)

w (e ,4) cw1(e) sin 24 + 0(e2) (3.2c)

p(e,4) = p0(e) + ep1 (e) Cos 24 + 0(c2) (3.2d)

p (e,$) = p
0(e) + cp

1
(e ) cos 2~ + 0(c2) (3.2e)

The lowest—order terms, with the subscript naught , pertain to the basic

circular-cone solution , which Is presumed known .

3.2 Free Stream Normal Velocity at the Shock

The free stream velocity in spherical coordinates is given by

~,
= v ,,[cos e r

_ s i n e
~~ej 

(3.3)

At the shock, 8 = 8~ - eg cos 24, we have to first order from

cos (c g cos 24) ~ 1 , sin (eg cos 24) 
~
cg cos 24

V,~ = V,,, [~
cos 8 + eg sin 3 cos 24} er

— ( s I n 3 —  eg cos B cos 24) e~ + 0(c2) j (3.4)

~~ .- .- -~~~~

‘

~~~~~~~ 
~ :~~

— 
•
-

~~~•

- 
- -  - 

~~~~~~~~~~~~ 
:~~~

- ~~ - - 
—~~~~~~~~~ ~~~~~~ -~~~~~ - - 

.
.

- 

T.
T

~~ . ~~~
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Using equation (2.10) , we find the normal velocity at the shock to be ,

to first order , *

= — V sin B + €gV cos B cos 24 + 0(e 2 ) (3.5)

3.3 Downstream Pressure at the Shock

The shock jump conditions give for the pressure ratio across the

shock the well-known relation

—~.=  1 +— ~~~~~
. (M~ -1) (3.6)

for a thermally and calorically perfect gas. Here y is the ratio of

specific heats , yEc /c , and M ~ •n/a is the normal free streamp v n
Mach number , a being the free stream speed of sound. Substituting (3.5)

into (3.6) yields

= 1 + ?fr (K~ - 1) -e 4fr K~g cot 8 cos 24 + 0(~
2 ) (3.7)

where K M sin 3.
8

Equation (3.2d) for the pressure evaluated at the shock reads

p(e 5 ,~ ) = p0 (e 5 ) + epl(e s ) cos 24 + 0(c2) (3.8)

Transferring this value to the basic unperturbed shock by means of a

Taylor expansion yields , to fi rst order ,

p(e 5 ,4) = p ( B ) + c  [.. {~ .2)
g + Pl(8)] cos 24 + 0(c 2 ) (3.9)

Identifying the first-order perturbation terms in (3.7) and (3.9) leads

to the shock boundary conditions for the perturbation pressure

= - 
~~ 

gp~ cot 8~ ~ 
(3.10)

For the undisturbed conical flow , the pressure gradient can be evaluated

in terms of the velocity gradient. Hence we have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
-
~~~

-
~~~~~~~~~~~

- -
~~~~~~~~~~ 

.
- 

~~~~~~~~~~~
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dp dv~= 0V  sin B [v0, cos 3 + [~~2.j ] (3.11)

Thus , alternatively, the pressure boundary condition can be written

p g  V2 sin B cOsB 

~~ 
+ {[

~~
.} /v~cos~} ] (3.12)

The derivative (dv0/de)8 can be evaluated in terms of the density ratio

across the shock, as shown in the next section.

3.4 Downstream Density at the Shock

The pressure ratio across the shock is given by

p (y-l) M 2 +2
(3.13)

2(y+l )  M~
Expanding this expression analogously to that for the pressure , we obtain

the shock density to first order:

= + cos 2p + ~~~~ , (3.14a )

where (y-l)K 2 
+ 2

_ _ _  = 2 (3.14b)
° ~‘o”~~ (y+l) K8

2g cot 
~~ 

- 

~
_ j (3.l4c )

An explicit expression for p
1 (3) is not needed . It can be shown from the *

basic cone solution that

dv 0 -1
— V,cos B [

~ 
— 

~~~~~~~~ ~ ] (3.15)

3.5 Downstream Velocity at the Shock

The velocity components imediately downstream of the shock are ob-

tam ed from the governing conditions on the normal and tangential compo-

nents. The normal components of the velocity is governed by the mass con-

servation equation :

T~~~-~ ~~~~~~~

-

~~~-
- ~~

-:
~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ‘

. I~~~
TT

~~~~~: .
* - ~~~~~~~~
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( V ’n) 5 = ;- (V ,,.n5) (3.16)

The right side is determined to first order by means of (3.5) and

(3.14):

(V .n)
~ 

= - ~0V sin 3 + c V ( ~0g cos 8 — 
~l 

sin ~ ) cos 24 + 0(c2)

(3.17)

The left side of the previous two equations is determined to first order from

(2 .10) , (3.1), and (3.2) as

= v0(e~
) + cv 1(8 5 ) cos 24 + 0(€ 2 ) (3.18)

Transferr ing this value to the unperturbed shock yields

= v0(~) +e[vi (8) - g 
[

th
~oJ jcos 24 + O(c

2 ) (3.19)

Comparing equation (3.17) and (3.19) leads to the following results :

— ~ V sin 3 (3.20)

= - ~1V sin 8 + g 
[~0

V cos 8+ [~;Q} ] (3.21a)

Utilizing (3.l4c) for 
~l 

now gives

= g [{ 2~’~ l )  

~ 
} V cos 8 + 

{
~~oj j (3.2lb)

The other two velocity components at the shock are determined from

conservation of the tangential components :
+ +
V x n  V x n  (3.22)
~ S S S

SubstItution of the fi rst-order expansions and transfer of the conditions

to the basic unperturbed shock yields

u0(B) = V cos 8 (3.23)

u1 (6) 
= g V sin 8(1-~~) (3.24)

—,-
~~

-*,—- .

~~~~

- - 
~~~~~~~~ — - 

-,. .: - .•., ~~~~~~~~~~~
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w1(8) = — 2gV (1—E 0) (3.25)

The needed boundary conditions at the shock have now been specified .

3.6 Surface Boundary Condition

At the body surface , e = 6 — ecoS 24, the normal velocity must

van ish:

= 0 (3.26 )

By means of vector analysis , we find the unit outward normal vector on

the elliptic cone surface to be, to first order ,

= 

~~~~~~~ 

+ O(c~) (3.27)

Substituting this expression and the velocity expansions into (3.25) and

transferring the boundary conditions to the basic circular cone surface

leads to the surface boundary conditions

v 0 ( i S  ) 0 (3.28)

1dv~
= (3.29)8

Equation (3.28), of course, is the tangency condition for the basic cone

problem , and equation (3.29) is the surface boundary condition for the

first-order perturbation. Rigorously, we should have obtained (3.29) by

matching the outer expansion with an inner expansion for the vortical

layer adjacent to the cone surface. Such an analysis shows that equation

(3.29) is indeed proper [14,15).

- -~-
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4. PERTURBATION EQUATIONS

The pressure, density , and velocity are governed by the equations of

change for mass, momentum , and energy, plus appropriate equations of state.

Here we assume the fl ow is inviscid , nonconducting, steady , and behaves

as a thermally and calorically perfect gas. We wish first to obtain ex-

pressions for the pressure and density perturbations in terms of the

velocities, and then finally to obtain a single equation for only one of

the perturbation velocity components.

4.1 Energy Equation

For steady flow, the energy equation can be expressed in terms of

the entropy , 5,  as

~.grad s = 0 (4.1)

Thus the flow on either side of the shock is isentropic , that is , the -

entropy along a streaml ine is a constant. Of course , the uniform flow

upstream of the shock Is homentropic since the entropy is the same on

every streamline before it passes through the shock. If the entropy is

expanded In the form

s (e,4) = s0(e) + c5 1(8) cos 24 + 0(c2) (4 .2)

then expansion of equation (4.1) leads to the result that is a constant

and that s1 is al so a constant. Thus the zeroth-order flow past the basic

cone is homentropic downstream of the shock. Since s 1 is a constant , the

first-order entropy perturbation depends only on the azimuthal angle 4 .

This result is not valid on the body surface because the body surface is

a stream surface that has a constant entropy, since grad s is a vector that

* is perpendicular to the surface s(0,~) = constant and is also perpendicular

to the velocity ~ which is tangent to the body surface. Thus expansion

~~~~~-•  T- -- ± 
~~~

- -

~~~~~~~~~~~~~

- 

~ : i .— ~~ ~~~— 
- _*__ ______ i*_
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(4.2) is not valid in a thin layer, called the vortical layer, adjacent

to the body surface. Only the pressure and azimuthal velocity are uni-

formly valid across the vorti-cal l ayer.

From the thermodynamic state relation for a perfect gas

(4.3)

we can deduce that the first-order pressure and density perturbation

satisfy the relation

p1
(e) p1(0) s1
ii ‘f’ p~(e) = 

~~

— constant (4.4)

Another relation between the pressure and density perturbation can

be found from energy considerations. Since the uniform flow upstream of

the shock is homenergic (constant total enthalpy) and homenergic across

the shock, It is also homenergic downstream of the shock. Thus we have

for a perfect gas
2 p V2

~~ 2. + ~~- = ~~~ —~~ + —~~~ = constant (4.5)y—l p 2 y-l p 2

Substituting the perturbation forms (3.2) into this equation and extract-

ing the first-order perturbation yields

p (e) p (e) p
1 — 1 = — I1 .2. (u u + v v ) (4.6)p0(e) 

p0 (e) y p0 a 1 o 1

This is a relation between the pressure and density perturbations in terms

of the velocity perturbation.

Equations (4.4) and (4.6) can be solved separately for the pressure

and density perturbations. We obtain

— p (u u + v v )
,~~~~~~~~ _ o 01 o l

Pl~
8) — 

2 p r
1a0

____  - ~~~~~~~~~ ~~~~ - - -- . - 

- - -- - -- -—

~~~~~~~~~~
~-
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p1 (e) 
= - p

0(u0u1 + v0v1 ) + p0F1 (4.8)

where a~(0) yp0/p0 is the speed of sound squared in the basic unper-

turbed flow , and

F1 
- 

(y-1) c v 
= constant (4.9)

The pressure and density perturbations are thus determined in terms of

the velocity perturbations. The constant F1 can be obtained from the

shock boundary conditions . Thus we obtain

~~ 
—

F1 
= 

p (8) + p (8) [ u~(~ ) u1 (e) + v~(~) v1 (8) 1

= yg V2 sin 8 cos 8 (l-~0)
2/a~(B) (4.10)

4.2 Momentum Equation

The momentum equation for inviscid steady flow is

[ [v
2
] -~~ x~~j = -vp , (4.11)

where = curl ~ is the vorticity vector. For the vector quantities let

= + + O(c2) (4.12a)

= + 0(c2) (4.12b)

where 
~l 

= curl 
~l 

and the spherical components of the first-order pertur-

bation velocity 
~ 

can be ascertained from equations (3.2). When the

perturbation expansions are substituted into equation (4.11), the first-

order perturbation equation can be extracted , and it is

~~~~~~1 . 
- ~~~~~~~~~~~~ 

— 

— —~~~~ ~1~ 
- i_ _

_.,_ . ~~~~ ---~~~~—
_-
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(p
1
C05 24) v {

~) + pv(~~.~1) 
- ~o~o X ~l 

= - v(p 1cos 24) 
- - I(4.b)

The first-order vorticity perturbation has the components

~
1r 

= 

~
‘
~ i~~ O [~

. (w 1 Sifl e) + 2v1 (4.14a)

= — 

~~~~~~ 
[2u1 + w sin ej (4.l4b)

1
4 

cos 2 ~ [v 1 
- j  (4.l4c)

We also have

Vo X ~ 
= er(sbo~i

4
) — 

0 0 1
4 

+ e (u c71 
- v0c21 ) (4.15)

From equation (4.13) it can be determined that

x 
~i
).er 

= 0 - (4.16)

It follows from (4.15) that = 0, and hence that
4

du
v i 

= 1 (4.17)

Thus equation (4.15) reduces to

X ~~ 
= e

4
(u c21 

- v c ~1 ) (4.18)

The 4-component of equation (4.13) can be wri tten as

Uo~7l — Vo~1r 
= - 2 L ~~~~

- + + v0v1 j S 1 fl 2$ (4.19)

The pressure perturbation p1 can be eliminated by means of equation (4.8),

and we get 2
u0c21 

— = 
2~~ F1 

~~~~~ 
(4.20)

I
~~~~~~ ~~-~~~-

-
~~~~~

—
~~~~ —

--  
~~~~~~~~~~~~~~

-- -- - 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - —- -

~~~~~~~ ~~~
—- - - - - -
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where a~(o) yp0/p0 and F1 is a constant given by (4.10). By means of

(4.l4a ,b) we can further rewrite (4.20) as

v0 ~~~~
- [2u1 + w1 5in ~] + u0 [2u1 

+ w1sin e] = ~.—i. a~( o )

(4.21)
Introducing the integration factor

‘(8) exp [f I 
~ ] d o ]  , (4.22)

we can integrate equation (4.21) and obtain

2F 8 a2 1
2u1 + w1sin e = ~—i. -

~

- J —3.—- de (4.23)

The constant of integration vanishes by virtue of the shock boundary condi-

tions (3.24) and (3.25).

Equations (4.17) and (4.23) give v1 and w1 in terms of u1. It remains

to find a single equation for u1. -

4.3 Continuity Equation

Mass conservation is described by the continuity equation

dlv(p~) 0 (4.24)

When the perturbation expansions are substituted into this equation and

the first-order perturbation extracted , we get

div (p
1

C05 24 + p0~1) = 0 (4.25)

With the basic—flow result dtv(p0V0) 
= 0 accounted for , this equation

can be rearranged to read
+

~ p 1cos 24 V

div = - V0.V [ ) - _].. •Vp (4.26)

- 

.
~~~~~ 

- 
-~~~~~- - ~~~:~~~~L~ :T:~~~_
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If it were assumed that the density varies so slowly that it is approx-

imately a constant, then the right side of equation (4.26) can be set

equal to zero as an approximation , and a relatively simple equation for

ensues. (The right side does vanish at the body surface , e = 6

This so-called constant-density approximation leads to remarkably

accurate results for the basic-flow solution and for the flow past a

circular cone at angle of attack [12 ,13]. These constant-density approx-

imations were justified a posterlori by comparison with extensive numer-

ical tabulated results. Such comparisons are not so available for the

elliptic-cone problem of present interest, and hence we must devote

more attention to the terms on the right side of equation (4.26).

In equation (4.26), let us now eliminate p 1 (e) by equation (4.7)

and utilize the following basic-flow results :

a2 dp dp da2
0 0 _ i  o.. 1 ~__ I o  (4 27)

p
0 

dO p
0 dO y—l dO dO ~2

EquatIon (4.26) can now be expanded and wri tten in the form

dv1 ______ 

2(2u +w sin o)
El ~ Aj ~~~

+ Cot O
L
l ~~~ ] V 1 

+ 12- 2 ~ c] U
1 

= - 

s~n2
~

where 2 (4.28)
V

A ,  ~ — 0 ( A  ‘~n

B(e) ::n e ½ {u~ 
+
~~

] { 2 + (y-l ) (4 .2gb)

C(e) 
~2 { 1 (y-l ) 

~~ 
{ u~ + 

~J } (4.29c)

—



~~~~~~~~
-

~~~~
- -.-

~~~~~~
--— —

~~~~~~~~~~~~~
—----

~~~~~~~~~~
=.-..

~~
-

-20-
The factors A , B, and C in equation (4. 28) are variable coefficients ,

and they stem from the right side of equation (4.26) . At the cone sur-

face e = iSa , the factors A , B, and C all vanish since v0 (6  ) = 0. At

the shock surface 8 8, the factors A , B , and C take the values

2~A(8) = (y+l) ~0(y-l) 
(4.30a)

8(3) = (y+1) - ~0(y-fl 
(4.30b)

~ ~ 21~!~ cOt
2B

C(8) = 
0 y+l 

— 
‘ 

(4.3Oc)
(y+l) - ~0(y- l)

where the undisturbed shock density ratio , ~0,is given by (3.l4b). In

the hypersonic l i m i t , K3 =oo and A( 3) takes the value (y-l ) /2y. Thus

for y = 7/5, A(B) = 1/7 for K8 
= 

~~. For hypersonic flow it is thus safe

to neglect A(e) compared to unity . Since A(e0) 
= 0, it is thus reason-

able to neglect A(e) always except perhaps very near sonic conditions ,

for which A (8) = 1 when K8 
= 1. L1ke~- se C(8) is small compared to

(2 - 4 csc2 8) in the coefficient of u1 for all values of K8. Thus C(e)

should be negligibl e in general since it also vanishes at 0 = 6 The

factor B( 3) varies between (y+l) /y for K
8 

= and 2 for K8 
= 1 , and thus

apparently should not be neglected compared to unity . Moreover , the

factor (1-B) changes sign between the shock and the body. On the other

hand , if A , B, and C are all neglected , the resulting differential

equation still behaves properly at the body surface since A , B, and C

* 
vanish there anyway. In addition , the resulting second-order differential equation

must satisfy the two boundary conditions for u1 (B) and v1 (B) at the shock.
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Thus , even though A, B, and C be neglected , the resulting solution

should behave properly at both sides of the shock layer , and presumably

also in between. As mentioned earlier , neglecting A , B, and C yields

good results for the circular cone at angle of attack.

Even though we Intend eventually to obtain an approximate solu-

tion by neglecting A , B, and C, we can justi fy the results still further

by recasting the differential equation as an integral equation . Replacing

v1 by (4.17) and w1 by (4.23), we can rewrite equation (4.28) as

2 4F H (e)
u~ + coteu~ + (2 — 4csc e )u1 

= — ~~~ + H1(o) (4.31 )
sin 8

where ~ a2 i
Il
~

(e) 
~~

- J V~~ de (4 .32a)

H1(e) Au~ + B cot 8 u~ + Cu1 (4.32b)

When H 0 and H 1 vanish , a solut ion to equation (4.31) is u1 
= csc 2 e .

This suggests the substitution

Ul 
= 

X(e) 
- (4.33)

sin 8

Equation (4.31) can now be written

4F H (e) H (e)r X ~~ — 1 0  1
3~ 

- _  
3y 

~~~~~ ~ ~~~~~

Two integrations yield

X ( a )  = X(8) + 
x ( ~) J sin 3e do (4.35)
sin 3 8

8 0 8 0
4F1 H (e) f ~ 

H1(e~ e
— — J Esin e J °

~~ 
do] do + Esin ej 

~~~ J de 

~~— - -~~- - —- ~~~~ —-.- - - “ - —  

- 
- 

~~~~~~~~~ - ~~ — —“~ —
~~~~
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where

X(8) = u1(3) sin
2 

3

= g V ,0 sin38 (1 - e
~

) (4 .36a )

X ’ ( B )  = g Sifl28 [{
~ 

- 3~~) V cos 8 + 
{~~~]3] 

(4.36b)

When X(e) is known , the velocity components are determined by

u1 (e) = X( e ) / sin 2 e (4.37a )

v1(e) = ~ ‘(e )  — 2X(e) cotel/sin2 o (4.37b )

w1(e) = [_ 2u1 (e) + 
~~~ 

H0(e)] / sin e (4 .37c)

The shock eccentricity factor g is determined by satisfying the surface

boundary condition (3.29) and then solving for g. Equation (4.35) is an

Integral equation because the unknown function X (o) also appears in the

function H1(O).

_ _ _ _ _  :::~~~i- -~ ~~~ -J~ II~~~ 
— -
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5. APPROXIMATE SOLUTION FOR
HYPERSONIC FLOW

5.1 Basic Cone Flow Approximations

For hypersonic flow in the limit M,,+~o and sino -#0 such that the

combination K M,,sin e remains finite, the basic cone flow can be approx-

imated accurately by [10,11]

u0(e) = 1 — 
sin 2 

~ [
sin2 e + in ~~~~~~~~~~ •11 (5.la)
sin 6 sin 8~~ -

v0(o) = - o 
El 

- 
sin 2 

6 ]  (5.lb)
sin 0

and the relation between the shock and body angles is given by

5 8 = /~
_ _  + 2 (5.lc)sin 6 / 2 (M

co
sin 5)

Let us now restrict ourselves to small angles suc h that sin 0 8 and

neglect second-order terms in (5.1). Then we get

1 (5.2a)

- e  [1 - (5.2b)

(5.2c )

where K6 M,06 is the hypersonic similari ty parameter.

5.2 Evaluation of the Integrals

Wi th the approximations (5.2a,b), the integrating factor I becomes

-
- ~~~~~~~~~~~~~ -

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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2 2 1/2
1 =  L~

_ 2 1 (5.3)

In the evaluation of the function H0(e) given by (4 .32a) , the speed of

sound squared a~(e) varies only by a few percent across the shock layer.

Hence we replace i t  by a~(8), and the function H0(e) becomes

a (s) 2 2
= 

~ 
{ 1 - 1:2 = ~ 

} (5.4)

We then obtain

H~(8) do = 

~ [~ 
{ 
~ z :~ 

- i} + 

6/82~6
2 ~~~~ 8 

~~-
1
6]]

(5.5)

[e~J 
~~~ do ~ = 

a~(~ ) 

E/:~ : 
~2 -

+ {cos~ } - cos
_l 

~
- ] + ~ + - e 2

26 / 3  — 6
(5.6)

5.3 Approximation for the Velocity

The first approximation solution for the integral equation (4.35)

is obtained by neglecting the integral involving H1(e) ,  which is the same

as omitting the factors A , B, and C in the original differential equation. 4

We thus get

ui(e) = + 
48382 

(~4 - ~4 + 

~ E/: = [ 
~ 

- 2 }
+ 

{~~
-1 

- cos 1 
~ J + 2 + 2 - 1] (5.7)

26/ 8 2 
— 62 

3 8 6e 30

L E ~~~-~ _~~~ TTEE~ 
~~~~ -~~~~~~~

- 
-
~~~~:

-
~ ~~ ~~~~~~~~~~~ _ _f...
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vl (e) = - 
2X( 8) 

+ 
X ’ ( Bl 

[~3 
+ 
~3) 

+ ~ [1$ = ~ 
{
~

+ 
~~2)

+ 

6~ ~ 
cos~ 

. - cos 1 
-
~~~~ 

- L:~
. - 

~~~~ j (5.8)

wi(e) = - 
2X( 3) -_ _  - 8~) 

- 
~l 
[
~ /~ ~ 

{- -

+ 

26/82 
—

~~~~~~~~ {cos
_1 

~~~~~

- cos~ ~~~~~~ 
(5.9)

where 

2
- 2F1a0(8) 

= - 2gV sin B cos 8(1 -

— 2gV 8(l - ~~)2 (5.10)

X( 8) gV~,,B
3(1 — 

~~~) 
(5.lla)

X~(8) g82 [ [~ 
- V + [

~
)] (5.llb) J

~~~~~~~ 

g V $ 2 [(i-fl - ~~(y+1) (5.llc)

Expression (5.llc) is the approximation consistent with the velocity

approximation (5.26b) , that is ,

1~!21 - v OO [i + -
~} (5.12a )

— V,0(2 — 
~~~) 

(5.l2b)

_ _  
- -  - ;

~~~: 
~ 

s.
.-
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since
2

1 — %  (5.l2c)

5.4 Shock Eccentricity Factor

The shock eccentricity factor , g, can now be determined from the

condition

= 
[~~

2~~= - 2V,0 (5.13)

Solving for g from equation (5.8) yields

~~=( 1 o)2{~~~~~~~~ -
~~

-
~~

} + (
~ ~~~~~~~~~~~~~~~~~~~

~~~ 
_ i 1}  [

~
+4 (5.14)

Denoting the basic-cone shock-body ratio by

= ,/~j i + 12 (5.15)

we then get

= 

~ E 
~~~~~~~~ 

+ ~~~~ (6 + c2) + 3~4 - 2 
- 5] (5.16)

The shock eccentricity factor, g, is plotted in Fig. 5.1 as a

function of K6 for y = 7/5. For K6 0, which corresponds to the limit

of linearized theory, the eccentricity factor tends to zero, g 0, that

Is , the shock tends to a circular Mach cone. For the limiting hyper-

sonic flow , ~~~~~~~~~~~~~ g approaches the asymptote g = 0.955, and the shock

tends to embrace the ellipti c cone body . The shock , however , is always

less eccentri c than the body . When K6 and ~ ~- 1 , then + 6 and

- 

- — ---
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g -
~~ 1 , and the shock embraces the body, in agreement with hypersonic

Newtonian theory. The angle-of-attack shock eccentricity factor, ~~,

obtained in Section 7, is also shown in Fig. 5.1 for comparison.

5.5 Shock-Layer Velocity Profiles

The first approximation for the velocity u1, given by equation (5.7),

is plotted in Fig. 5.2. The hypersonic similarity form gives u1/V 6 as

a function of 8/a , K6 , and y .  Because the thickness of the shock layer

varies as a function of K6, the shock l ayer is normalized by means of the

variable

(5.17)

The body surface corresponds to 0 = 0 and the shock surface to e = 1.

At the body surface u1/V 6 is insensitive to variations in K6, having

approximately the value unity . At the shock surface, u1/V 6 is quite

sensitive to variations in K6. In the hypersonic limit K6 
= ~~, u1/V 6

Increases only sli ghtly from the shock to the body.

The veloci ty perturbation v 1/V is shown in Fig. 5.3 as a function

of e , -
~~~

= 1.4, and various values of K6. The variation of v1/V across

the shock layer is analogous to the variation of u1/V ,06 , except that

v1/V,, is equal to —2, as imposed by the boundary condition (5.13).

The azimuthal velocity perturbation w1/V is shown in Fig. 5.4 as

a function of e , ~ = 1.4, and various values of K6 . At the shock sur- -~ -
face , w1/V increases as K6 increases. For K6 2, the variation of

across the shock layer is very slight. At the body surface, w1/V~,

decreases as K 6 increases . This is shown also in Fig. 5.5. When

+ 0, w1 (6)/V —2, which is in agreement wi th linearized theory. In
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= 8 + cos 4 - cg cos 24
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Figure 5.1 Shock Eccentricity Factors , -~ = 1.4
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1.2

Figure 5.2. Radial Perturbation Ve locity,y = 1.4
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Figure 5.3. Polar Perturbation Velocity Components , y = 1.4
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Figure 5.4. Azimuthal Perturbation Velocity Components , y 1.4
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Figure 5.5. Azimuthal Velocity at the Body Surface, y = 1,4
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the hypersonic limi t K6 -* ~~, w1 (S)/V becomes asymptotic to the value

0.659 for y = 1.4. The correspondi ng angle-of-attack contribution ,

~(a ) /V , discussed in Section 7, i shown in Fig. 5.5 for comparison .

5.6 Evaluation of the Approximate Analysis

Let the first approximation for the integral equation (4.35) be

denoted by t4°) , which is given by equation (5.7). Then the integral

equation (4.35) can be written , for small angles , as

u1 
= u~°~+ ~

(c) 
, (5.18)

where 0 e

~~ 1 ( 3 H1 (e) -
~

u~ ‘ (0)  I sin o f —r—— de l do (5.l9a)
sin 0 -‘ ~ -~ ~ in 8

3 8
8 ~ H1 ( o )

J e  [ I —.
~-—— del do (3.1gb)

H1( e )  = Au~ + B cot e u~ + Cu1 (5.20)

Consider now an approximate evaluation of the correction function

Towards this end we utilize the well-known convergent iteration

procedure for Voltera-type integral equations. The first step is to

substitute the first approximation ~~
0) into H1 (e) and then evaluate

~~~ Expression (5.7) for 4J) is fairly compl i cated and does not

l end itself to a simpl e analytical evaluation of ~
(c) Figure 5.2 shows,

however , that u~
0)(e) can be approximated by the simple formula

u~°~ 
2

1-I] G(o,K6) (5.2la)

where G(e,K6) is a slowl y varying function of e and K6, being approxi-

mately unity . It now follows approximately that

~‘(0) ~
(o) 3

V V 18
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u”~
0
~ 3

~ ~ 6~~- G (5.2lc)
I .  0

since G Is nearly a constant. Again it may be verified that expression

(5.2 1b) gives a reasonable approximation to Fig. 5.3.

Substitution of expression (5.21 ) into (5.20) and than (5.1gb)

yields

u~~~ e) u~~~(e) J
:

e3 

~ 1: ~ ~~~ 
+ 
~3] 

deJde

(5.22)

In the evaluation of A , B, and C , given by equation (4.29), we set

a~(e)  a~(6 ) since a~(e) varies by only a few percent over the shock

l ayer. With the approximations (5.2a,b) we now get, for small angles ,

and wi th z 0/6,

A = Nz2 [1 - 

]

2 
(5.23a)

B N 
[
i - 

~
] [2 + (y-l ) Nz2 {l - 1 )1 (.23b)

C - (y-l ) N2 Z 
[1 - 1 ]

2 
(5.23c)

where ~, .,
2

N 
~~~ (2 l)(2 2~ 1) 

(5.24)

where ~ 8/6 , given by (5.15). Wi th the formulas (5.23), the integral

in (5.22) can be evaluated . We obtain

r - -- — .-.--- - - - - -~~~~~~~ - - - - a- aLa
~~~ IIIk,k ~~~ - ~~~~~~~~~~~— ~~~~~~ A -. 

~~~~~~~ 
.
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u (c) (e) (2 2

Nu~
0
~(e) 

- 4 ln [~) 
+ ~ -z [ ~ + 

3a2z2

4 4  3 1 5+ (a -z ) 
~~~~~~~~~~~~~~4a a l2a

+ (y-1)N [2 in [2.1 - 
(a2-z

2) 
[3 + 

3a2Z2] (5.25)

4 4 (3 1 7 1 1 1+ (a -z ) 
1~~2 

- 
;;-4 

+ - 
l6a 8 + 

16a 4z4

At the shock , z = a , the correction vanishes , u~~~(8) = 0. The largest

correction occurs at the body surface , z = 1. Then we have

u~~~(6) ~
. 2 

~ 13 7 5 ~4 ln a + ‘~~ I 3 + 2 + 
~~4 

—

Nu~ ‘ ( a )  ‘- 3a 31y 3a -‘

(5.26)

+ (Y~l) N [2 ln  
(a -l) [ 3 +

31 + 7 1 1 + 1 J ]

The correction factor u~~~(6)/u~°~(6) is shown in Fig. 5.6 as a

function of K6 and y = 1.4 . In the hypersonic limit , K6 
= ,0, the cor-

rection factor is approximately -0.0073, and thus the error in the

first approximation is about one percent or less. As K6 decreases , the

correction becomes slightly more negative , being approximately -0.015

at K6 = 1.7. As K6 decreases further , the correction factor increases

from the minimum negative value and becomes zero at K6 1. Further

decreases in K 6 give a rapid increase in the correction factor , becoming

0.75 In the limit K6 = 0 which corresponds to l inea r i zed  theory.

In the hypersonic flow range , we can expect the first approximation ,

obtained by neglecting ~~~ to be very accurate . In fact, this is true

1~
_ _ _  ~~~LL ~ ~~~~~ ---~~~~~~ --~
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when ~ 1. When 1(6 < 1 , the first approximation is less accurate.

We note , however , that the correct limiting results for K6 = 0, which

correspond to the limiting case of linearized theory , are recovered .

This is true because the perturbation u1 itself vanishes when 6 + 0

and al so because the surface boundary condition v1 (6) 
= -2V is en-

forced on the first approximation itsel f (which produces the first

approximation for g). The surface boundary condition is always ex-

actly enforced. Thus , although the linearized limit = 0 is re-

covered , the approach to the linearized limit is in error. Because

the results are correct at K6 = 0 and very nearly correct at K6 = 1

the error in the range 0 < K6 
< 1 , while greater than for K6 > 1 ,

is less than that indicated in Fig. 5.6.

The above observations are born out by the results of Doty and

Rasmussen [13] for hypersonic flow past a circular cone at angle of

attack. Their approximate analysis was analogous to the present analy—

s-Is, but the results could be compared extensively with well— known

tabulated results. The agreement was very good. Thus , whereas ex-

tensive tabulated results for the elliptic cone do not exist as they

do for the circular cone at angle of attack , the above error analysis

and the experience of Doty and Rasmussen justify confidence in the

present analysis.

L~ -- 
-

*
~~~~~

-
~~~~~~-~~~
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6. .SURFACE PRESSURE ON THE ELLIPTIC CONE

6.1 Surface Perturbation Pressure Coefficient

The pressure on the surface of the cone is given by (for ~ = 0)

p(e
~~
4) = p0(e~) + Ep l (O C ) COS 24 + 0(c2) (6.1)

where

= 6 — ccos 24 + 0(~
2) (6.2)

Transferring the expression (6.1) to the basic cone gives

= p0 (6 ) + e[p1(6) - 
[
~~oJ ]  COS 24 + O(c

2)
6 (6.3)

At the cone surface, the gradient of the basic pressure , p0, vanishes

since v0(6 ) = 0, that is ,

dp dv

[
~~

}6 
= - P

~~
(6 )  v

~
( a) [uo + 

~~~]6
= 0 (6.4)

Hence we have

~~~~~~~~ 
= p

0
(6) + cp1(5 )  COS 24 + 0(c2) (6.5)

The pressure coefficient, ~~ is defined by

C =
~~~~0~

2
~ 2 ~

Thus we can wri te

C~ = C~ + cC~ COS 24 + 0(c2) (6.7)

where

C 
________ 

(6.8a)

~

o ~~M
2

- - ..-..- .- .. .— .._-. .-. _~~ _~~~~~ 
_ - - - —

• — - -~ —~~~~~- - -- --~~~ - -
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2p1 (6)C 2 (6.8b)
~l ‘,pM

The pressure perturbation is given by equation (4.8), and since v0(6) 
= 0,

we have

= — p
0
(6) u0(6) u1 (6) + p0(a ) F1 (6.9)

Using the previous results for the fi rst approximation , we obtain the

hypersonic similarity form

~1 2N p0(6) ~~~~ 
a~(8) u1 (6)

= 

~~ p,, L a3 - 

a~(6) 
V~d 

(6.10)

where

p0
(a ) 

= 1 + ~ K~ [~
] (6.11)

and N is given by (5.24). From an analysis of the basic cone flow

[11,12,13] we have

a~(6) — 

(y—l ) a2 [ ln a2 + 
~2 

— 1]

a0(3) (a - l)(2a + — 1)

2 2
= 1 + a in a (6.l2b)

6 a - l

Figure 6.1 shows C /6 plotted as a function of K6 for -v = 1.4.

For K = 0, we get C /6 = -2, in agreement with linearized theory . In5 p1
the hypersonic limit , K6 = 

~~, C~ /6 approaches the value -3.811. Thus

In the hypersonic limit , the surface pressure coefficient approaches 
*

the fo rm

—

~~~ 

= 2.094 - 3.811 cos 2~ + 0(c
2) (6.13)

- -  
- _

~~~~~~ 
1_~~~~~~~~~~~~~~~~

_
~~~~~~~~~ f ._
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6.2 Comparison with Experiment

Surface pressures were measured on two different elliptic cone

models , each at free stream Mach numbers 3.09 and 6.0, by Zakkay and

Vis - Ich [16]. The geometric properties of these models were as follows :

Model I Model II

a = 0.2555 a = 0.2256

b = 0.3562 b = O.~~~ .#O3 t

e = 0.320 e = 0.523

= 16.36° 0m = 15.56°

= 0.155 e/6 = 0.266

6 = 16.64° = 0.29O1- rad a = 16.28° = 0.2841 rad

These two models have the same cross sectional areas for the same sta-

tion along the elliptic— cone axis. A circular cone with the same cross

sectional area has a semi—vertex angl e of 16.79°. The experimental

data are compared with the results of the present analysis and also

with the analysis of Martellucci [5]. Martellucci used an extension of

the so-called linearized characteristics method . This method essen-

tially uses the first-order perturbation equations utilized in the

present analysis , but takes a finite number of terms in a Fourier

series expansion to represent the shape of this surface. Martellucci

used the first six terms , (In view of the fact that the Fourier

coefficients for an ellipse decrease in magnitude like powers of the

eccentricity , e, as seen in equation (2.6), it would seem that a higher-

order theory should be utilized to accommodate the higher-order Fourier

coefficients . In this sense , the linearized -characteristics method

I
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does not seem to be entirely rational , at least for the ellipse.) The

perturbation equations were integrated numerically by Martellucci ,

but the general results corresponding to the present analysis were not

obtained.

Figure 6.2 shows the pressure distribution on one quadrant of

model I for the elliptic cone for M = 6.0, which corresponds to

= 1.747. The present results agree very well with the data on the

major arid minor rays (
~ 

= 9Q0 and 180°), but give pressures that are

too large in between. The overal l agreement is good considering that

the perturbation theory should be strictly valid when c << 6 , and this

- condition is met only marginally. The results of Martellucci give

slightly better agreement with the data , but probably not enough to

justify the numerical computational effort.

Figure 6.3 shows pressure-distribution data on model II for

M = 6.0, which corresponds to K6 = 1.724. This model is substan-

ttally more eccentric than model I, and the condition c a is cer-

tainly not satisfi ed. Nevertheless , fairly good agreement with the

present analysis definitely represents the overall trends of the data .

The results of Martellucc i do not appear to give substantially better

overall agreement with the data.

Figure 6.4 shows the pressure—distribution data on model I for

the smaller Mach number , M = 3.09, for which = 0.900. Again the

present results give good agreement with the data on the semi—major

ray, but the data are lower otherwise. The overall agreement does not

seem to be quite as good as for the higher Mach number M = 6.0,

which might be partially expected on the grounds that the apprnximate
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analysis is less accurate at K6 = 0.900 than for K6 = 1.747. The

results of Martellucci give a little better agreement with the data

between the major and minor rays.

Figure 6.5 shows the pressure—distribution data on model II for

M = 3.09, for which K6 = 0.888. The agreement with the present analy-

ses is fairly good near the major and minor rays, but poor in between.

Again , for this large value of eccentricity , higher-order perturbation

terms are probably required . The linearized-characteristics method

used by Martellucci picks up higher—order harmonics in Fourier repre-

sentation of the ellipse and thus shows somewhat better agreement with

the data between the major and minor rays. In view of the large value

of c, however, there are probably higher-order perturbation terms that

are of the same order of magnitude as the higher-order Fourier har-

monics.

6.3 Drag on the Elliptic Cone

The pressure force on a finite-length elliptic cone is given by

= - n dS (6.14)

where S is the area of the slant face , and

= 6 - c COS 24 ÷ 0(c2) (6.l5a )

= - 
2c SIri 24 e + 0(c

2
) (6.15b)

dS r sin ec dr d4 + O(c2)

tan e 2
= z 

~~ 
dz d4 + O(c ) (6.15c)

~~~~~ _ A 
--
- — -  

.-- - -  
~~— ~~~~~~~~ - --
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p(ec) 
= p

0(6) + cp 1 (6) cos 24 + O(e2) (6.15d)

When the integration is carried out in the range 0 < < 2~r and

O < z < H, where H is the l ength of the cone axis , we get for the

cone drag

D = p0(a )A + 0(~
2 ) , (6.16)

where

A irH2 tan2 6 (6.17)

is the base area of the basic cone of semi-vertex angle 6. Thus the

drag on the elliptic cone, ignoring terms of order c2, is the same as

the drag on the basic cone of semi -vertex angle 6 having the same l ength .

- -
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7. ELLIPTIC CONE AT ANGLE OF ATTACK

7.1 Superposition of Results

Let the freestream wind be inclined to the axis of the elliptic

cone such that the inclination angle , ~~~, is measured in the x-z plane

shown -in Fig. 2.1. Let the coordinate system remain fixed to the body

so that the z-axis is the axis of the cone. The surface boundary condi-

tions remain unchanged . The shock shape can now be represented by [12]

2 2
= ~ + ag cos 

~ 
— ~g cos 24 + O( cL ,~c ,c ) (7.1)

where ~ is the eccentricity factor associated with angle of attack. We

assume ~ and c to be small and of the same order of magnitude . Since

the first-order perturbation equations and boundary conditions are linear ,

the angle of attack problem for the circular cone can be superposed with

the elliptic -cone solution at zero angle of attack. The subsequent re-

suits for the circular—cone angle of attack problem were obtained by

Doty [12] and Doty and Rasmussen [13] by an analysi s very similar to the

foregoing analysi s for the elliptic cone. The angle—of-attack shock

eccentricity factor was found to have the form 
~

= 
3 + 2a2 [3 - 

4(i+~
2
)] - [aa

2
~i~~~2j 

- 

in [a + (a2~l)~~2j

5 - 2(l+a~) [1 + - [(
2 1)1 /2 

j

l 
in [a + (a2~l)

l/2
~

(7.2)

where a is given by (5.15) as before. This function is shown in Fig. 5.1.

The first-order expansion for the flow variables outside the vor-

tical l ayer can be written as
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u(e ,4) = u0
(e) + a

~i (O) cos • + cu1 (e) COS 24 (7.3a)

v(e ,4) = v0(o) + a~1(0) COS 4 + cv 1 (e) cos 24 (7.3b)

w (e ,4) = a~1 (e) s in 
~ 

+ cw1 (e) sin 24 (7.3c)

p(e ,4) = p0(e ) + c~ 1(e)  cos 
~ 

+ cp 1
(e ) cOs 2~t, (7.3d)

p (e,4) = p0(e) + a~1(0) cos 
~ 

+ cp 1 (e) cos 24 (7.3e)

The variables with the tilde notation pertain to the angle of attack solu-

tion past a circular cone. -

7.2 Pressure on the Body Surface

The pressure on the body surface is given by

p(ec,4) p0(6) + cos 4 + cp 1 (6) cos 2p (7.4)

where

~i (6) 
= — p0(6) u~

(a)
~~
(6) + p (6) 

~i (7.5)

F1 + yV28(1 - ~)(l - ~o)
2
~~~~ (7.6)

_ _ _  = - 2 + (14) [
~ 

+ a~ - ~~ + 1 - 
ln(a~~~~ l]~~ (7.7)

which is analogous to expression (6.9). In terms of the pressure coeffi-

d ent , we have

C~ 
= C~ 

+ cos 4 + cos 24 (7.8)

where

~~~~~~ ~~~~~~~~~~~~ :~~-L~~ ~~~~~~~~~~~~ -~~ ~-‘ - :~~~1 ~~ ~ r- .
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- 2N 
p0(e) p0(a) I— (i.~

) 
- 

a2(8) ul (6) ~T (7 9)6 p
~ 

p~(~) L a3 a~(6) V~6 J 
-

In the calculations of Doty [121 and Doty and Rasmussen [13] ’ the ratios

p0(a)/p 0(~ ) and a~(B)/a~(6) were set equal to unity consistent with

their “constant—density ” approximation .

The angle of attack perturbation pressure coefficient given by

(7.9) Is shown in Fig. 7.1 When K6 = 0, the limiting result of linear-

ized theory is recovered, ~ /~s 
= -4. When = 

~~, the limiting hyper-p1
sonic value is ~~ /6 = —4.0836. Near K = 1,, there is a small dip inp1 6

* 
the curve. As 

~6 approaches zero , there is a small overshoot in the

curve whtch does not occur in the exact theory . Over the range of K6 ,

the value of ~~~~/a does not differ greatly from -4. In the hypersonic

limit , 
~6 

,we can write

2.094 - 4.084 {
~
] cos 4 - 3.811 24 (7.10)

correct to first order in ct andc . Expression (7.10) indicates that c~/ S

and €16 should be sufficiently small in order for the perturbation analysis

to be valid.

7.3 Comparison with Other Results

The present results for surface pressure at M = 6 and angles of

attack of ~ = 5° and 10° are shown in Figs. 7.2 and 7.3 for models I and II.

The results of Martellucci are shown for comparison together wi th the experi-

mental data of Zakkay and Visich for ~ = 10° , which is a large enough angle

of attack to make for a demanding comparison . The present results agree wel l wi th

Mar-telluci for both models for ~ = 5° , the worst agreement being on the leeward ray,

. ~~~ --
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4 = 0°. For ~ = 10°, the two results are in fair agreement for the small-

eccentricity ellipse , model I in Fig. 7.2, except near the leeward ray

of the elliptic cone. For the l arge-eccentricity ellipse at ~ = 10°,

model II in Fig. 7.3, agreement between the two results is good only near

the windward ray. For model II at ~ = 100 , the combined large values of

cz/6 0.607 and €/6 = 0.270 render the first-order perturbation theory

invalid , especially near the leeward ray where the separate perturbations

are additive . -

- tL. - :  ~~~~~~~~~~~~ ~~ ~ r.-
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7.4 Normal Force on the Elliptic Cone

The normal-force on the cone is found to be

= C~~ ~ M
2P A  + O(a2,c2,aE) (7.11)

where ? is defined by (6.14), A -riM
2 tan26 is the base area of the basic

cone of semi-vertex angle 6, and

is the c~- der ivat ive  of the normal-force coefficient.

The moment about the cone vertex is

M = - JJ p(e~) ~ X ~~~ 
(7.13)

Evaluation of this integral gives

= 

~y 
[CM ci t M2p~HA] + O(c~

2
,€
2
,cc~) (7.14)

where

M 3 N  3 6  -

is the ~~
- derivative of the moment coefficient.

For completeness, we can rewrite the drag on the elliptic cone ,

(6.16), in terms of an axial-force coefficient. If the base pressure

Is reckoned as p ,  then we have

F.e
~ 

CA ~
- M2PØ,A + (~

2 c2 ac) (7.16)

where

CA 
= Cp0 flo] 6

2 (7.17)



and C is given by (6.l2b).p0
P1The ratios —
~
— and ~_2

2. depend only on K6 and -r. They are in-

sensiti ve to K~ when K5 is large. Thus when K6 is large , that is , for

hypersonic flow, the main effect of the cone cross-section shape

is determined from 6. For slender cones (small 8m) we have from (2.3a)

and (2.8a) the alternati ve forms

6 = ,/~5 [1 + 0(e2)] 
(7.18)

6 = b v1~I [1 + 0(e2)] 
—

The cross-section area of an ellipse is proportional to the product ab.

Hence when the cross-section area is held fixed , the force coefficients

are independent of the eccentricity e when terms of order e2 are

neglected.

On the other hand , when b is held fixed , then 6 varies with the

eccentricity to the fi rst power. The norma l force and moment are

independent of 6 when K5 is large , but CA decreases wi th increasing e

when b is held fixed. Thus the lift-drag ratio increases when b is

held fixed and e increases .
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8. CONCLUDING REMARKS

General flow field results for the hypersonic flow past an elliptic

cone have been obtained . The results are valid for large Mach numbers

and small stream deflections such that the hypersonic similarity para-

meter, K5 M 5 , is fixed in the limiting process. The results are

more accurate for large K5 (K 5 > 1), but the proper linearized theory

result is recovered when K~ ÷ 0. The ellipse eccentricity factor, e, in

the analysis must be small in the strict sense that c ’S << 1. Comparison

with experimental results indicates that c/S need not he much less than

unity , but merely moderately less than unity , for acceptable engineering re-

sults. In addition , the angle of attack should be such that ct/S << 1

In the strict perturbation sense. An important feature of the analysis

-Is that the basic circular cone angie ,6, has been well defined in terms

of the geometric properties of the elliptic cone .

The methodology of this analysis can be extended to other cross-

section shapes. Each term in a Fourier expansion of the cross-section

shape can be handled in an analogous manner and accurate , approximate

analytic results obtained. Strictly speaking, however , the cross-sec-

tion shapes should deviate only slightly from a circular cone in order

for the perturbation analysis to be valid. Moreover , successive Fourier

coefficients should not decrease in powers of the basic expansion para-

meter, for then corresponding terms of higher—order perturbations be-

come equally important. 
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